The Multiple Readmissions Predictive Model was developed by our IHiS team, together with National Healthcare Group (NHG), National University Health System (NUHS) and Singapore Health Services (SingHealth). It is the first predictive model in Singapore that is used across all public healthcare clusters.
How It Works
Traditionally, care support programmes identify patients who are at risk of
multiple hospital readmissions, through their historical data. These risk scoring methods have limitations in handling patients with multiple co-morbidities.
The Multiple Readmissions Predictive Model is able to analyse multi-dimensional facets of the patient, ranging from multiple co-morbidities, chronic diseases to end of life conditions, and has an accuracy of seven in 10 patients predicted. Using over a thousand indicators, which include patient age, the number of inpatient admissions and total length of stay in the past two years, the model automatically identifies patients who have a history or are at risk of multiple readmissions.
The team is looking at moving the Multiple Readmissions Predictive Model further upstream to primary care settings, to enable early intervention and delay the progression of their conditions.
Benefits
To Patients & Caregivers
Improved care support and potential reduction of length of stays in the hospital
With the early identification of high-risk patients, nurses are able to follow up with phone calls or arrange for home visits if necessary. This allows for timelier intervention to help reduce patients' average length of stay in the hospitals and healthcare utilisation.
To Staff
Productivity gains with automatic identification of patients
Previously nurses had to spend almost half a day manually screening through the entire inpatient list and going round the wards, speaking to newly admitted patients and their care team to identify those at risk of multiple readmissions.
The predictive model automatically flags out high-risk patients from the hospital’s daily inpatient admission list. This reduces nurses’ assessment workload by up to 90%, and they can spend more time focusing on direct patient care.